University of Groningen Exam Numerical Mathematics 1, June 19, 2017

Use of a simple calculator is allowed. All answers need to be motivated.
In front of each question you find a weight, which gives the number of tenths that can be gained in the final mark. The maximum total score for this exam is 5.4 points.

Exercise 1

(a) Let $n+1$ points $\left(x_{i}, y_{i}\right), i=0,1, \ldots, n$, be given with distinct nodes x_{i}. A polynomial P is called interpolating if $P\left(x_{i}\right)=y_{i}, i=0,1, \ldots, n$.
(i) 4 Give a complete description of the Lagrange interpolation formula, and explain why this formula provides an interpolating polynomial P of degree $\leq n$.
(ii) 2 Show that there cannot exist another interpolating polynomial P of degree $\leq n$.
(iii) 4 Suppose that all the nodes x_{i} lie in an interval $I=[a, b]$, and that we are interested in evaluating the interpolant P at arbitrary $x \in I$. How is the corresponding Lebesgue constant Λ defined, and what are the implications if its value is large (say, $\Lambda=10^{5}$)?
(b) For a smooth function f on the interval $[0,1]$ we approximate its (one-sided) derivative $f^{\prime}(0)$ by $P^{\prime}(0)$, where P is the polynomial (of degree ≤ 2) that interpolates f at the nodes $x_{0}=0, x_{1}=h$ and $x_{2}=2 h$.
(i) 1 Show that P is given by

$$
P(x)=\frac{f(0)}{2 h^{2}}(x-h)(x-2 h)-\frac{f(h)}{h^{2}} x(x-2 h)+\frac{f(2 h)}{2 h^{2}} x(x-h) .
$$

(ii) 1 Use the above explicit expression for $P(x)$ to show that

$$
P^{\prime}(0)=\frac{1}{2 h}[-3 f(0)+4 f(h)-f(2 h)] .
$$

(iii) $\sqrt[3]{ }$ Show that $P^{\prime}(0)$ is a second order approximation of $f^{\prime}(0)$ (with respect to h).

Exercise 2

(a) Consider a system of nonlinear equations $f(x)=0$, where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is smooth.
(i) 4 Derive Newton's method for the above system, and explain briefly how this method works.
(ii) 3 Consider the above system with $n=2$ and

$$
f_{1}\left(x_{1}, x_{2}\right)=x_{1}+x_{2}^{2}+\sin \left(x_{1} x_{2}\right)-3, \quad f_{2}\left(x_{1}, x_{2}\right)=x_{1}+x_{2}+\cos \left(x_{1} x_{2}\right)-4 .
$$

Starting from the initial guess $x^{(0)}=(\pi, 0)^{T}$, show that Newton's method converges to the root $\alpha=(3,0)^{T}$ in a single step.
(b) Consider the fixed point iteration $x^{(k+1)}=\phi\left(x^{(k)}\right)$ with $x^{(0)}$ given and $\phi(x)=\frac{1}{3} x\left(4+x-2 x^{2}\right)$.
(i) 1 Determine all fixed points α of ϕ.
(ii) 4 For each of these fixed points α, check whether $\left\{x^{(k)}\right\}$ converges to α if $x^{(0)}$ is chosen sufficiently close to α. If that occurs, also determine the order of convergence.

Continue on other side!

Exercise 3

(a) Consider the system of linear equations $A x=b$, where

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 2 \\
1 & 2 & 3
\end{array}\right], \quad b=\left[\begin{array}{c}
6 \\
9 \\
10
\end{array}\right]
$$

(i) 4 Determine the Cholesky factorization and $L U$ factorization of A.
(ii) 3 Use one of these factorizations to solve $A x=b$.
(b) For solving a general linear system $A x=b$ we consider iterative methods of the form

$$
P x^{(k+1)}=(P-A) x^{(k)}+b
$$

where P is a nonsingular preconditioner of A.
(i) 1 Determine the iteration matrix B and show that the error $e^{(k)}=x^{(k)}-x$ satisfies $e^{(k+1)}=B e^{(k)}$. When does the method converge?
(ii) 5 What is the name of the iterative method that corresponds to the preconditioner $P=D=\operatorname{diag}\left(a_{11}, a_{22}, \ldots, a_{n n}\right)$? Show that this method converges if A is strictly diagonally dominant by row.

Exercise 4

(a) For the numerical solution of the initial value problem

$$
y^{\prime}(t)=f(t, y(t)), \quad y\left(t_{0}\right)=y_{0}
$$

we use the so-called implicit midpoint rule, which is defined as

$$
u_{n+1}=u_{n}+h f\left(\frac{1}{2} t_{n}+\frac{1}{2} t_{n+1}, \frac{1}{2} u_{n}+\frac{1}{2} u_{n+1}\right)
$$

where $u_{0}=y_{0}$ and $t_{n}=t_{0}+n h$.
(i) 3 Show that application of this method to the test problem $y^{\prime}(t)=\lambda(t) y(t)$ leads to the recurrence relation

$$
u_{n+1}=\frac{1+\frac{1}{2} h \lambda\left(\frac{1}{2} t_{n}+\frac{1}{2} t_{n+1}\right)}{1-\frac{1}{2} h \lambda\left(\frac{1}{2} t_{n}+\frac{1}{2} t_{n+1}\right)} u_{n}
$$

(ii) 4 Give the definition of 'A-stability' (unconditional absolute stability) and verify whether the implicit midpoint rule is A-stable.
(b) Consider the Poisson equation on the (open) unit square $\Omega=(0,1) \times(0,1)$,

$$
\begin{equation*}
-\frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial^{2} u}{\partial y^{2}}=f(x, y) \tag{1}
\end{equation*}
$$

where $u(x, y)=g(x, y)$ is given on the boundary of Ω (Dirichlet boundary conditions).
(i) 2 First show that for any smooth function $v:[0,1] \rightarrow \mathbb{R}$ and $x \in(0,1)$ the quantity

$$
\begin{equation*}
\frac{v(x+h)-2 v(x)+v(x-h)}{h^{2}} \tag{2}
\end{equation*}
$$

provides an approximation to $v^{\prime \prime}(x)$ of order 2 with respect to h.
(ii) 5 We choose an integer $N \geq 1$, set $h=1 /(N+1)$ and define grid nodes $\left(x_{i}, y_{j}\right)=$ $(i h, j h), i, j=0,1, \ldots, N+1$. We construct approximations $u_{i, j}$ to $u\left(x_{i}, y_{j}\right)$ by requiring that differential equation (1) is satisfied at all internal grid nodes while replacing both second derivatives by the second order difference quotient of type (2). This leads to a linear system $A \tilde{u}=b$, where the vector \tilde{u} consists of all values $u_{i, j}$ at the internal nodes. Find the matrix A and right-hand-side vector b in case $N=3$.

